Type: \(\displaystyle A^{1}_4\) (Dynkin type computed to be: \(\displaystyle A^{1}_4\))
Simple basis: 4 vectors: (2, 2, 3, 4, 3, 2, 1), (-1, 0, 0, 0, 0, 0, 0), (0, 0, -1, 0, 0, 0, 0), (0, 0, 0, -1, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_2
simple basis centralizer: 2 vectors: (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 24
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{4}}+4V_{\omega_{4}}+3V_{\omega_{3}}+3V_{\omega_{2}}+4V_{\omega_{1}}+9V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 0, -1, -1)g_{-13}-\varepsilon_{4}+\varepsilon_{6}
Module 21(0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, -1)g_{-7}-\varepsilon_{5}+\varepsilon_{6}
Module 31(0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, -1, 0)g_{-6}-\varepsilon_{4}+\varepsilon_{5}
Module 45(-1, -1, -2, -3, -3, -2, -1)(0, 1, 0, 0, 0, 0, 0)g_{2}
g_{9}
g_{15}
g_{20}
g_{-59}
-\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 55(-1, -2, -2, -3, -2, -2, -1)(0, 0, 0, 0, 1, 0, 0)g_{5}
g_{11}
g_{17}
g_{21}
g_{-58}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{4}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 61(0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1, 0)g_{6}\varepsilon_{4}-\varepsilon_{5}
Module 71(0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 1)g_{7}\varepsilon_{5}-\varepsilon_{6}
Module 85(-1, -2, -2, -3, -2, -1, -1)(0, 0, 0, 0, 1, 1, 0)g_{12}
g_{18}
g_{24}
g_{28}
g_{-56}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
\varepsilon_{1}-\varepsilon_{5}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 91(0, 0, 0, 0, 0, 1, 1)(0, 0, 0, 0, 0, 1, 1)g_{13}\varepsilon_{4}-\varepsilon_{6}
Module 1010(0, -1, -1, -2, -2, -2, -1)(0, 1, 0, 1, 1, 0, 0)g_{16}
g_{22}
g_{26}
g_{27}
g_{-57}
g_{32}
g_{-55}
g_{37}
g_{-52}
g_{-49}
-\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{4}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{5}+\varepsilon_{6}
Module 115(-1, -2, -2, -3, -2, -1, 0)(0, 0, 0, 0, 1, 1, 1)g_{19}
g_{25}
g_{31}
g_{35}
g_{-53}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
\varepsilon_{1}-\varepsilon_{6}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 1210(0, -1, -1, -2, -2, -1, -1)(0, 1, 0, 1, 1, 1, 0)g_{23}
g_{29}
g_{33}
g_{34}
g_{-54}
g_{38}
g_{-51}
g_{42}
g_{-48}
g_{-45}
-\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{5}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{4}+\varepsilon_{6}
Module 1310(0, -1, -1, -2, -2, -1, 0)(0, 1, 0, 1, 1, 1, 1)g_{30}
g_{36}
g_{40}
g_{41}
g_{-50}
g_{44}
g_{-46}
g_{47}
g_{-43}
g_{-39}
-\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{6}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{4}+\varepsilon_{5}
Module 1410(0, -1, 0, -1, -1, -1, -1)(0, 1, 1, 2, 2, 1, 0)g_{39}
g_{43}
g_{-47}
g_{46}
g_{-44}
g_{50}
g_{-41}
g_{-40}
g_{-36}
g_{-30}
-\varepsilon_{4}-\varepsilon_{5}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{3}+\varepsilon_{6}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{1}+\varepsilon_{6}
Module 1510(0, -1, 0, -1, -1, -1, 0)(0, 1, 1, 2, 2, 1, 1)g_{45}
g_{48}
g_{-42}
g_{51}
g_{-38}
g_{54}
g_{-34}
g_{-33}
g_{-29}
g_{-23}
-\varepsilon_{4}-\varepsilon_{6}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{3}+\varepsilon_{5}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}+\varepsilon_{5}
Module 1610(0, -1, 0, -1, -1, 0, 0)(0, 1, 1, 2, 2, 2, 1)g_{49}
g_{52}
g_{-37}
g_{55}
g_{-32}
g_{57}
g_{-27}
g_{-26}
g_{-22}
g_{-16}
-\varepsilon_{5}-\varepsilon_{6}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{3}+\varepsilon_{4}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{4}
Module 175(0, 0, 0, 0, -1, -1, -1)(1, 2, 2, 3, 2, 1, 0)g_{53}
g_{-35}
g_{-31}
g_{-25}
g_{-19}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 185(0, 0, 0, 0, -1, -1, 0)(1, 2, 2, 3, 2, 1, 1)g_{56}
g_{-28}
g_{-24}
g_{-18}
g_{-12}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}+1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 195(0, 0, 0, 0, -1, 0, 0)(1, 2, 2, 3, 2, 2, 1)g_{58}
g_{-21}
g_{-17}
g_{-11}
g_{-5}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
Module 205(0, -1, 0, 0, 0, 0, 0)(1, 1, 2, 3, 3, 2, 1)g_{59}
g_{-20}
g_{-15}
g_{-9}
g_{-2}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
Module 2124(-1, -2, -2, -3, -3, -2, -1)(1, 2, 2, 3, 3, 2, 1)g_{60}
g_{-14}
g_{61}
g_{-10}
g_{-8}
g_{62}
g_{-4}
g_{-3}
g_{-1}
g_{63}
-h_{4}
-h_{3}
-h_{1}
h_{7}+2h_{6}+3h_{5}+4h_{4}+3h_{3}+2h_{2}+2h_{1}
g_{-63}
g_{1}
g_{3}
g_{4}
g_{-62}
g_{8}
g_{10}
g_{-61}
g_{14}
g_{-60}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{3}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
1/2\varepsilon_{1}-1/2\varepsilon_{2}-1/2\varepsilon_{3}-1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
\varepsilon_{7}-\varepsilon_{8}
0
0
0
0
-\varepsilon_{7}+\varepsilon_{8}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
\varepsilon_{1}-\varepsilon_{3}
1/2\varepsilon_{1}-1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}+1/2\varepsilon_{7}-1/2\varepsilon_{8}
1/2\varepsilon_{1}+1/2\varepsilon_{2}-1/2\varepsilon_{3}+1/2\varepsilon_{4}+1/2\varepsilon_{5}+1/2\varepsilon_{6}-1/2\varepsilon_{7}+1/2\varepsilon_{8}
Module 221(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{5}-h_{2}0
Module 231(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 241(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 8
Heirs rejected due to not being maximally dominant: 9
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 9
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_3
Potential Dynkin type extensions: A^{1}_5, D^{1}_5, A^{1}_4+A^{1}_1,